Cdc53 Targets Phosphorylated G1 Cyclins for Degradation by the Ubiquitin Proteolytic Pathway
نویسندگان
چکیده
In budding yeast, cell division is initiated in late G1 phase once the Cdc28 cyclin-dependent kinase is activated by the G1 cyclins Cln1, Cln2, and Cln3. The extreme instability of the Cln proteins couples environmental signals, which regulate Cln synthesis, to cell division. We isolated Cdc53 as a Cln2-associated protein and show that Cdc53 is required for Cln2 instability and ubiquitination in vivo. The Cln2-Cdc53 interaction, Cln2 ubiquitination, and Cln2 instability all depend on phosphorylation of Cln2. Cdc53 also binds the E2 ubiquitin-conjugating enzyme, Cdc34. These findings suggest that Cdc53 is a component of a ubiquitin-protein ligase complex that targets phosphorylated G1 cyclins for degradation by the ubiquitin-proteasome pathway.
منابع مشابه
The ubiquitin-proteasome pathway of intracellular proteolysis.
Intracellular proteins are targeted for degradation by the covalent attachment of chains of the small protein ubiquitin; a process known as ubiquitylation. Many proteins are phosphorylated prior to ubiquitylation, and therefore ubiquitylation and degradation of these proteins is regulated by kinase activity and signalling cascades. Many ubiquitylated proteins are degraded by the 26 S proteasome...
متن کاملInhibition of APC-mediated proteolysis by the meiosis-specific protein kinase Ime2.
Proteolysis triggered by the anaphase-promoting complex (APC) is needed for sister chromatid separation and the exit from mitosis. APC is a ubiquitin ligase whose activity is tightly controlled during the cell cycle. To identify factors involved in the regulation of APC-mediated proteolysis, a Saccharomyces cerevisiae GAL-cDNA library was screened for genes whose overexpression prevented degrad...
متن کاملF-Box Protein Specificity for G1 Cyclins Is Dictated by Subcellular Localization
Levels of G1 cyclins fluctuate in response to environmental cues and couple mitotic signaling to cell cycle entry. The G1 cyclin Cln3 is a key regulator of cell size and cell cycle entry in budding yeast. Cln3 degradation is essential for proper cell cycle control; however, the mechanisms that control Cln3 degradation are largely unknown. Here we show that two SCF ubiquitin ligases, SCF(Cdc4) a...
متن کاملHect E3 ubiquitin ligase Tom1 controls Dia2 degradation during the cell cycle
The ubiquitin proteasome system plays a pivotal role in controlling the cell cycle. The budding yeast F-box protein Dia2 is required for genomic stability and is targeted for ubiquitin-dependent degradation in a cell cycle-dependent manner, but the identity of the ubiquitination pathway is unknown. We demonstrate that the Hect domain E3 ubiquitin ligase Tom1 is required for Dia2 protein degrada...
متن کاملAn intact NEDD8 pathway is required for Cullin-dependent ubiquitylation in mammalian cells.
Skp1-Cdc53/Cul1-F-box (SCF) complexes constitute a class of E3 ubiquitin ligases. Recently, a multiprotein complex containing pVHL, elongin C and Cul2 (VEC) was shown to structurally and functionally resemble SCF complexes. Cdc53 and the Cullins can become covalently linked to the ubiquitin-like molecule Rub1/NEDD8. Inhibition of neddylation inhibits SCF function in vitro and in yeast and plant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 86 شماره
صفحات -
تاریخ انتشار 1996